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Metal Clusters in Catalysis. II. An Electron Spin 
Resonance Study of Dinuclear Metal Complex Fragments 
and Their Interaction with Organic Substrates 

Sir: 

Metal clusters are attractive catalytic species especially 
for template syntheses as illustrated1 for N14 [CNC-
(CH3)3]7. In addition, the weakest bonds in clusters may 
often prove to be the framework cluster bonds;2 hence there 
is the further potential in cluster complexes of reversibly 
generating reactive fragments. In this context, the simplest, 
most readily available class comprises dinuclear metal com­
plexes. Herein we describe for a group of readily dissociable 
iron complexes, [(allyl) Fe(CO)2L]2, catalytic chemistry 
and an ESR study that provides, (1) an accurate measure of 
Fe-Fe bond energies, (2) a kinetic, thermodynamic, and 
electronic view of the interaction of (allyl)Fe(CO)3 with 
unsaturated organic substrates, and (3) a demonstration 
that two mononuclear isomers are usually present in each 
system and that these are highly fluxional. 

The binuclear [C3H5Fe(CO)3J2 complex, A, dissociates 
in solution to give a paramagnetic species. Equilibria, pre­
sumed to be complex,33 are now shown to be singular. Anal­
ysis of ESR signal integral intensities over a temperature 

range of +40 to -90° establish that the solution state of A 
is fully4 represented by dissociation 1. 

[C3H5Fe(CO)3J2-2C3H5Fe(CO)3 (1) 
A B 

No gas phase equilibria data are available but mass spectral 
studies show dimer to be present. Solvent effects upon equi­
librium 1 were small and most significant with toluene (see 
Table I). The most informative solvent interaction, vis a vis 
catalytic reactions, is with hexenes. When A was dissolved 
in cold 1-hexene, the equilibrium was similar to that of A in 
toluene. However, a reaction of the complex, probably B, 
with 1-hexene occurred with no CO loss and an activation 
energy of ~10 kcal/mol5'6 to give 7/'-C3H5Fe(CO)3(l-hex-
ene) which in dimeric form exhibits a substantially reduced 
Fe-Fe bond energy. This type of olefin complex must be an 
important intermediate73 in the catalytic chemistry of A. 
We found that A rapidly7b isomerized 1-hexene to trans-2-
hexene at 25°, initiated vinyl polymerization, e.g., ethyl 
vinyl ether and styrene, and rapidly polymerized allene at 
22° to a solid -(-Ct=CH2)CH2-)*- polymer. In the isom-
erization itinerary that follows olefin adduct formation, 
conventional isomerization pathways of hydride insertion-
elimination70 or olefin adduct —• j73-allylmetal hydride —• 
internal olefin adduct formation cannot be followed precise­
ly. A possible intermediate is (r;1-allyl)(rj'-alkylallyl)-
FeH(CO)3.7d Interestingly, there was no extensive hydride 
insertion into the C3H5 group because the original complex 
A was recovered unchanged from isomerization reactions.313 

For the analogous reaction system of A with 2-hexene, rate 
of adduct formation was lower than with 1-hexene.7e Entro­
py data (Table I) and the relatively large activation energy 
for solvation suggest that hexene loss does not occur in the 
dimerization of the olefin adducts, <x-C3H5Fe(CO)3(hex-
ene).8 

In C3H5Fe(CO)2L derivatives, the iron-iron bond energy 
for the dimeric form is close to that of A while the entropy 
loss on dimerization is invariably larger than for the steri-
cally less encumbered parent. Steric factors are evident also 
in the bond energy data for the phosphine series (Table I, 
enthalpies may be read as iron-iron bond energies). None­
theless, barring extreme ligand bulkiness, there was a small 
perturbation of the iron-iron bond energy as ligands were 
varied in the phosphine and phosphite series; electronic li­
gand effects seem to be well buffered by the remaining allyl 
and carbonyl ligands which have donor-acceptor bonding 

Table I. Thermodynamic Data for Dimer-Monomer Equilibria (1) in C3H5Fe(CO)2L-S and ESR Parameters for Monomer 

h" 

CO 
CO 
CO 
CO 
CO 
CO 
CO 
(CO)(l-hex) 
(C0)(2-hex) 
C0(2-but) 
P(CH3)3 

P(CHj)2C6H5 

P(CH3)^C6H5 

PCH3(C6H5), 
P(C6H5), 
P(C2H5), 
P(OCH3), 

Medium" 

crys 
nuj 
pe 
thf 
mthf 
tol 
1-hex 
1-hex 
2-hex 
2-but 
tol 
tol 
pe 
tol 
tol 
tol 
pe 

AHD 

13.5 
13 
12.5 
11 
12 

9 
13 
11.5 
12 
13 
13.5 
10 

ASC 

37 
41 
39 
30 
32 
41 
61.5 
31 
39 
42 
46 
40 

No dimerization 
10.5 
14 

44 
46.5 

(P. - 2) d 

0.0446 
0.0455 
0.0467 
0.0455 
0.0458 
0.0459 
0.0449 
0.0448 
0.0447 
0.0449 
0.0449 
0.0478 
0.0473 
0.0482 
0.0504 
0.0463 
0.0462 

Cfil - IY 

0.0068 
0.0055 

0.0051 (0.0756) 
0.0055 

0.0159(0.0229) 
0.0056 

-0.0158 

-0.0046 

(Sl - 2)e 

0.0667 (0.0232) 
0.0668 

0.0646 (0.0257) 
0.0668 (0.0239) 

0.0568 (0.0635) 
0.0624 
0.0755 (0.0242) 

0.0775 (0.0251) 

"H? (ap)f 

5.7 
6.0 
6.0 

-5 .6 
5.4 
5.4 

6.0 (11.2) 
6.0 
6.0 
7.4(7.2) 
5.7^(16.7)? 
5.7 (11.4) 
7.6(7.7) 

a Key: crys, monomer defects in dimeric crystals; pe, pentane; nuj, nujol; thf, tetrahydrofuran; mthf, 2-methyltetrahydrofuran; tol, toluene; 
2-but, 2-butyne; 1-hex, 1-hexene; 2-hex, 2-hexene. i In kcal/mol, precision ~7%. c In eu, precision -10%. d At 25°C, ±0.0005. e At -16O0C, 
±0.0010, less intense (isomer) signal in brackets./Absolute value of isotropic hyperfine coupling constant X 104 cm.-1, ±<0.2. £/4H(| |) = 5-3, 
AP(ID = 43,Xp(J^ = 51 for more abundant isomer, -4H(||) = 6-2 for the other isomer. 
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duality. A more extensive series should provide an incisive 
picture of how to sterically and perhaps electronically pro­
mote fragmentation in this prototype cluster class. 

For all monomers to be 17-electron9 complexes, an ^'-al-
lyliron interaction should be present only in C3HsFe-
(CO)3(hexene) and probably the butyne analog6 although 
there is a possible continuum of idealized forms that range 
from symmetrical 7j3-allyl to tj'-allyl. ESR spectra for most 
complexes (solution state) exhibited the same triplet hyper-
fine structure, arising from two magnetically equivalent hy­
drogen atoms, presumably the anti10 set in 7j3-allyl and the 
aliphatic set in Tj'-allyl forms,11 in addition to a phosphorus 
doublet in phosphine and phosphite derivatives. The spin-
orbit contribution to the isotropic g values (Table I), which 
to a first approximation reflects the ligand field strength 
around iron, varies only slightly (~10% maximum) with li­
gand variation which invariance mirrors the relative con­
stancy of the iron-iron bond energies. 

Relatively large variations in go with temperature were 
observed, e.g., go for B varied from 2.0459 to 2.0423 in the 
+25 to —94° range. This effect could be due to an equilibri­
um between isomers (vide infra) or specific outer sphere 
solvation12 but the crucial point here is that the effects have 
no significant influence on the monomer-dimer equilibrium 
since there were no deviations from linearity in the In K vs. 
1/r plot over 90-130° ranges. 

Definitive evidence for the presence of isomers in mono­
nuclear complexes in frozen solutions (glasses) was ob­
tained. In many cases, the ESR spectra of glasses comprised 
the superposition of signals from two different species with 
different sets of g\\ and g± (see Table I). Whenever an ac­
curate interpretation of these spectra was possible,13 the 
more intense signal had g\\ < g±. For complexes with the 
hexenes, the less intense signal was also characterized by g\\ 
< g±, but for the remaining compounds the order was g\\ > 
g±. In frozen solutions of A in 2-butyne, the two species in-
terconverted rapidly on the ESR time scale at —90° in the 
solid state as seen from the collapse of the overlapping an­
isotropic spectra to a single isotropic line which was the 
same as in liquid solutions. A similar phenomenon was ob­
served for B at defects in the crystals of A, where the col­
lapse of the anistropic spectrum to the isotropic line oc­
curred above —30°. Such interconversion processes in the 
solid state show that the two species observed at low tem­
perature are two isomers of the same composition. For 
C3H5Fe(CO)2P(C6H5)3 in toluene glass, both isomers ex­
hibited triplet hyperfine structure from two equivalent pro­
tons but with different values of AH-

We defer discussion of the nature of the isomers and 
their unusual fluxional characteristics until X-ray crystal 
structure determinations for dimeric and monomeric forms 
and theoretical calculations14 have been completed. Substi­
tuted allyl analogs are being synthesized so that ESR char­
acterization of T?3- and Tj'-allyl interactions may be defini­
tive and the catalytic chemistry of the monomeric paramag­
netic species is under investigation with respect to scope and 
mechanism. 
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Species with Strong Heteronuclear Metal-Metal 
Bonds. Dimers with Tungsten-Molybdenum Bonds of 
Order 3.5 and 4.0 

Sir: 

Heteronuclear metal-metal bonded species containing 
only two metal atoms are of great importance since they 
constitute the simplest systems in which the effects of sub­
stituting one metal atom for another can be studied in de­
tail. Heteronuclear species with metal-metal bond order 
greater than unity should be especially interesting, but sel­
dom have they been realized. A few years ago in this labo­
ratory the heteronuclear carboxylate dimers MoW(C>2CR)4 
were prepared as constituents of mixtures containing the 
homonuclear molybdenum dimers M 02(02CR)4.

1 Until re­
cently the separation of such mixtures was unsuccessful. 

In more recent work2 it has been shown that selective io-
dination of a benzene solution of Mo2(02CC(CH3)3)4-
MoW(C>2CC(CH3)3)4 mixtures effected the desired separa­
tion by precipitation of [MoW(C>2CC(CH3)3)4]I, essential­
ly free of any corresponding dimolybdenum product. In­
frared spectra and magnetic susceptibility data led to the 
conclusion that the precipitated iodide contained the one-
electron oxidized cation [MoW(02CC(CH3)3)4]+. It was 
presumed that the structure and metal-metal bonding in 
this cation were entirely analogous with that in the com­
pounds [M02(O2CC(CH3)3)4]+l3"2 and K3Mo2(SO4^-
3.5H2O.3 We now report the preparation4 and molecular 
structure of [MoW(O2CC(CH3)S)4]I-CH3CN, and its re­
duction to MoW(02CC(CH3)3)4, the first pure heteronu­
clear species containing a quadruple metal-metal bond.5 

Surprisingly, solutions of [MoW(02CC(CH3)3)4]I in ac-
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